Зачем нужны теплосчетчики на отопление? Семь главных вопросов после установки теплосчетчика.

Как обмануть теплосчетчик и возможно ли это сделать?

Очень многие недобросовестные пользователи энергоресурсов придумывают различные способы того каким образом можно обмануть прибор учета и заплатить меньше того что положено. Теплосчетчики не являются исключением и многие абоненты используют различные уловки для их обмана. Для того чтобы понять, как обмануть теплосчетсчик, для начала нужно разобраться в принципе работы прибора, так как он может быт различным, а от этого соответственно и зависит способ его остановки. Выделяют три вида тепосчетчиков:

  • Электромагнитного действия;
  • Вихревого действия;
  • Тахометрический;

Также для того чтобы понять, как обмануть тепосчетчик следует учитывать основные составляющие его элементы:

  • Фиксатор расхода воды;
  • Термопреобразоватеь;
  • Вычислитель тепла;

Данные расходомера и термодатчика передаются на тепловычислитель, который и выдает данные о расходе теплоэнергии. Замену данных возможно проводит на любом из элементов счетчика.

Варианты коррекции показаний электромагнитных приборов учета

Принцип работы данного прибора заключается в том, что между двумя магнитными катушками, которые находятся над и под частью движения воды в приборе создается электромагнитное поле благодаря подаче переменного напряжения определенной частоты. Вода при движении создает ЭДС, который и передается по средством электродов на тепловычислитель.

Чтобы изменить магнитное поле, снаружи прибора устанавливают катушки, напряжение которых является противофазой катушкам счетчика. Сила магнитного поля счетчика занижается и соответственно уменьшается выработка ЭДС.

Варианты обмана вихревого типа счетчиков

Принцип работы такого прибора заключается в установке в проточной части счетчика тела обтекания, которое может иметь различные геометрические формы. За телом образуются вихри, они напрямую зависят от мощи передвижения жидкости. Электроды считывают информацию о количестве вихрей и передают ее на вычислитель. Для обмана такого счетчика снаружи монтируют постоянные магниты сбивающие электромагнитное поле прибора.

Чтобы понять, как остановить счетчик тепла, можно также использовать способ нарушения движения потока жидкости, которое изменит нормальное образование вихрей. Для этого достаточно просто сместить прокладки в проточной части прибора при его установке.

Это основные способы искажения показаний приборов учета тепла, которые пользуются большой популярностью у недобросовестных абонентов. Следует помнить, что оплата по приборам учета уже, итак, является выгодной и экономичной поэтому не следует нарушать закон и попадать в ситуацию, которая может повлечь за собой штраф.

Преимущества теплосчетчиков от компании «Тепловодомер»

Компания уже более 20 лет производит различные модификации счетчиков для учета теплоэнергии как для автономной установки в квартирах, так и для общедомовых нужд мы предлагаем следующие модификации приборов:

  • Теплосчетчики ELF которые могут работать совместно с водосчетчиками и газосчетчиками;
  • Теплосчетчики MULTICAL UF - рассчитаны на установку как в жилых, так и в нежилых промышленных объектах.

Преимущество наших приборов заключается в том, что они оснащены мощной противомагнитной защитой и воздействовать на них внешними раздражителями, которые будут способствовать искажению показаний не получится, что защитит сам прибор от порчи, а его владельца от неприятностей.

Описание:

В статье «Одна из проблем энергоучета» речь шла о том, что производители счетчиков воды и тепла для стимулирования сбыта своей продукции создают своего рода мифы, формируя у потребителя неверные представления об измерениях и учете. Но и потребители преуспели в мифотворчестве. Рассмотрим самый распространенный из «потребительских» мифов – миф о «взломе» теплосчетчиков и повсеместной фальсификации результатов учета.

«Взлом» теплосчетчиков: правда и вымысел

Д. Л. Анисимов , главный специалист ООО «Диамер», автор сайта «Теплопункт»

В статье «Одна из проблем энергоучета» 1 речь шла о том, что производители счетчиков воды и тепла для стимулирования сбыта своей продукции создают своего рода мифы, формируя у потребителя неверные представления об измерениях и учете. Но и потребители преуспели в мифотворчестве. Рассмотрим самый распространенный из «потребительских» мифов – миф о «взломе» теплосчетчиков и повсеместной фальсификации результатов учета.

Человеку свойственно на всякое «за» находить свои «против» – чаще из прагматических соображений, но иногда и просто из спортивного интереса. Поэтому совершенно неудивительно то, что как только появляется прибор учета, придумываются и способы его «обмануть». Об этих способах начинают открыто говорить и писать, но если специалисты делают это для того, чтобы обратить на проблему внимание других специалистов и найти способ защиты, то неспециалисты зачастую толкуют такие разговоры и статьи превратно. Так, в частности, случилось со статьями А. Г. Лупея «О запрещенных методах «метрологического обслуживания» коммерческих узлов учета тепловой энергии» и В. П. Каргапольцева «О фальсификациях при приборном учете тепла и воды» 2 . Читатели «зацепили» только ту информацию, что лежала на поверхности: теоретически любое микропроцессорное устройство (каковым и является теплосчетчик) может быть перепрограммировано в процессе эксплуатации, и на практике зафиксированы случаи, когда такое свойство некоторых типов приборов использовалось недобросовестными эксплуататорами для фальсификации результатов учета. И вот через какое-то время пошли разговоры и даже появились статьи о том, что любой теплосчетчик можно «взломать» и все всегда так и делают. Вот уж верно: нам не дано предугадать, как слово наше отзовется! Запомнилось высказывание одного из участников интернет-форума сайта «Теплопункт»: «…программное обеспечение, в частности, вычислителей СПТ знакомый программер ломает при помощи кнопок на панели… минут за семь». А совсем недавно участник форума сайта «Ростепло», называющий себя «научным редактором» некоего технического журнала, на полном серьезе заявил, будто бы «при желании можно через любую кнопку вычислителя виброкодом (азбукой Морзе) ввести нужный код: затрат на тысячу, воровства на миллион». Но как все обстоит на самом деле, а именно: можно ли «взломать» теплосчетчик и стоит ли заниматься этим на практике?

Начнем с того, что на «взломе» теплосчетчиков (или тепловычислителей) очень легко и удобно спекулировать. Во-первых, никто толком не понимает и не может объяснить, что именно имеется в виду под этим самым «взломом». Во-вторых, все знают, что тепловычислитель – это вроде как маленький компьютер, а о «взломе» компьютеров говорят сплошь и рядом. В-третьих, большинство пользователей теплосчетчиков представление об их «начинке» (равно, впрочем, как и об устройстве компьютеров) имеют весьма приблизительное. Благодатная почва для распространения слухов о «хакерах от теплоучета». Но правомочны ли в данном случае аналогии с миром компьютеров? С «компьютерными взломами» все понятно: они связаны, как правило, с проникновением в систему извне (через какой-либо интерфейс) путем подбора (расчета) нужной кодовой комбинации (пароля) с последующим считыванием или изменением каких-либо хранящихся в этой системе данных. При этом нужно понимать, что «взломать компьютер» хакер может потому, что:

– он знаком с операционной системой;

– он знаком с интерфейсом;

– доступ к данным и возможность их изменения средствами операционной системы через некий интерфейс существует в принципе, т. е. предусмотрена разработчиком.

А что же в случае с теплосчетчиком?

Во-первых, мы не имеем не только стандартных и изученных [хакерами] операционных систем – мы не имеем операционных систем вообще. Можно говорить о рабочей программе, но эта программа у каждого типа теплосчетчика своя, и вряд ли кто-то, кроме разработчика-производителя, располагает ее исходными текстами и способен найти в ней некие «лазейки» для последующего «взлома».

Во-вторых, мы не имеем стандартных интерфейсов – речь здесь не о разъемах и электрических сигналах, а о протоколах. Впрочем, при незнании «хакером» операционной системы наличие этих интерфейсов вряд ли ему поможет.

В-третьих... а что, собственно, будет делать хакер, «проникнув внутрь» вычислителя?

При помощи кнопок на панели вычислителей многих типов (СПТ, ВКТ, КАРАТ и пр.) можно изменять настроечные параметры, т. е. всевозможные коэффициенты и признаки, определяющие логику работы прибора. Но это – общедоступная и задокументированная функция. Так что же тогда «ломает» «знакомый программер» их выше процитированного высказывания? Да еще целых семь минут? Может он подбирает забытый пароль для изменения настроечных данных, чтобы «сэкономить» потом путем изменения какого-либо коэффициента? Но зачастую как, например, в случае с СПТ, доступ к настроечным данным защищен не паролем, а механически – переключателем, расположенным под опломбированной крышкой. Но даже если изменить коэффициент, то и на табло вычислителя он будет высвечиваться в измененном виде, т. е. зафиксировать факт подтасовки будет проще простого. Так в чем тогда вообще смысл этого «взлома»?

Очевидно, смысл есть лишь тогда, когда взломщик либо знает, как изменить коэффициент в памяти прибора, оставив его неизменным при индикации, либо он меняет вовсе не коэффициенты, а данные в архивах. Теоретически возможно и то и другое – но только при том обязательном условии, что производитель прибора специально такую возможность предусмотрел, а наш хакер о способе реализации этой возможности узнал. При этом вбивать при помощи кнопок (их у вычислителей мало, у некоторых образцов – вообще одна-две), а то еще и азбукой Морзе огромные массивы взаимосвязанных архивных данных, занятие, определенно, не для слабонервных. Производитель скорее обеспечил бы возможность перепрограммирования (под этим термином можно понимать и изменение рабочей программы, и изменение содержимого архивов) при помощи внешнего устройства (компьютера, пульта) через интерфейс передачи данных без нарушения пломб и оставления следов. «Польза» от наличия такой возможности может заключаться в том, чтобы «в случае чего» «заметать следы» собственных недоработок, приводящих к некорректной работе или отказам прибора. Может пригодиться эта возможность и сервисным организациям в тех же случаях – фальсифицируя данные учета, они могут и «обелить» производителя, чью продукцию внедряют, и сохранить собственное лицо; могут они таким образом маскировать и свои огрехи в монтаже приборов. Но соответствующие знания и необходимые спецсредства (программные и/или аппаратные) им может предоставить только производитель теплосчетчика. Разговоры же о неких «посторонних» хакерах, которые «взламывают» любой прибор «при помощи кнопок» – несостоятельны. Тем более, что ни один «очевидец» так и не смог объяснить автору, что именно «взламывают» в теплосчетчике, другими словами – в чем суть сего действа?

Но вернемся к искажению данных учета при помощи спецсредств. Дипломатично выражаясь, допускаем, что такое возможно. Но можно ли пользоваться этим широко и постоянно? Современный теплосчетчик – это средство учета тепла и теплоносителя, анализирующее и фиксирующее в своих архивах значения многих взаимосвязанных параметров за большие интервалы времени. «Грамотно» подтасовать все эти данные весьма сложно – фальсификация обнаруживается, что, собственно, и было показано в упомянутой выше статье А. Г. Лупея. Задача фальсификатора осложняется еще и тем, что согласно требованиям Правил учета содержимое архивов теплосчетчиков считывается и сохраняется на электронных или бумажных носителях с периодичностью, меньшей, чем глубина архивов. Другими словами, ежедневно или еженедельно данные переписываются в журнал. Очевидно, что при помощи журнала отследить произведенное в какой-то момент «насильственное» изменение хранимых в вычислителе данных становится совсем просто. Производители теплосчетчиков понимают это лучше потребителей, поэтому не в их интересах реально использовать «фальсификационные» функции и уж совершенно глупо открывать их кому-либо, обучать кого-то ими пользоваться. Ведь ясно, что любой достоверно выявленный факт изменения данных в приборе учета однозначно свидетельствует о том, что в деле замешан производитель.

В заключение дадим иллюстрацию реальной защищенности теплосчетчиков от «взломов» и фальсификаций. Несколько лет назад на конференции в Екатеринбурге В. С. Казачков из г. Омска докладывал о разработанной им системе поквартирного учета тепла. Один из слушателей задал вопрос: что будет, если накрыть датчик температуры воздуха в квартире грелкой, чтобы его показания практически не отличались от показаний датчика температуры радиатора отопления? Ведь чем меньше разница температур радиатора и воздуха, тем меньше потребление тепла: Q = f(D t). Докладчик ответил просто блестяще: система учета анализирует все параметры, и если она «увидит», что температура воздуха в квартире настолько возросла, то подаст сигнал на пульт пожарной сигнализации и «к вам приедут»! Мораль этой истории такова: можно обмануть отдельный датчик, но почти невозможно – целую систему. А теплосчетчик – это именно система, измеряющая и фиксирующая целый ряд взаимосвязанных параметров. Знание этих взаимосвязей позволяет анализировать архивы прибора и выявлять не только фальсификации, но и «нечаянные» отклонения в работе прибора, например, вызванные несовершенством его конструкции или низким качеством изготовления.

Таким образом, рассказы о том, будто бы «любой вычислитель можно взломать при помощи его же кнопок» – это выдумка, миф, придуманный потребителями. Поэтому не стоит утверждать, что «весь учет фальсифицирован». Конечно, информация о том, что теплосчетчики некоторых типов могут быть «перепрограммированы» при помощи спецсредств непосредственно в узле учета, не лишена оснований, но нужно знать, что раскрываются подобные фальсификации достаточно просто – для этого нужно только знать физику происходящих в системе теплоснабжения процессов и не лениться анализировать архивы «подозрительных» теплосчетчиков.

2 Текст статей можно найти на сайте www.teplopunkt.ru.

Если на вашем объекте - жилом многоквартирном доме, либо общественном здании юридического лица уже стоит теплосчетчик, как можно добиться успеха в экономии потребления тепловой энергии? На этот вопрос мы Вам можем подсказать следующее - необходимо поставить автоматическую систему погодного регулирования. Наша компания имеет опыт установки данных систем в Приморском крае. Но необходимо отметить, что данная система является более дорогим удовольствием, чем установка теплосчетчика. В статье приведенной ниже описывается методика работы данной системы, выбор остается за Вами.

РЕГУЛИРОВАНИЕ ТЕПЛОПОТРЕБЛЕНИЯ ЗДАНИЙ - РЕАЛЬНАЯ ЭКОНОМИЯ ТЕПЛА

С. Н. Ещенко, к.т.н., технический директор ЗАО «ПромСервис», г. Димитровград

Известно, что при организации приборного коммерческого учета потребленного тепла нередко уменьшаются платежи за теплоэнергию только лишь из-за того, что указанное в Договоре с теплоснабжающей организацией количество тепла не совпадает с реально потребленным. Однако, снижение платежей - не экономия тепла, а экономия денег. Реальная экономия энергии наступает тогда, когда каким-либо образом происходит ограничение ее потребления.

1. От чего зависит потребление энергии?

Потребление энергии, прежде всего, обусловлено потерями зданием тепла и направлено на их компенсацию, чтобы поддержать желаемый уровень комфорта.

Теплопотери зависят:

  • от климатических условий окружающей среды;
  • от конструкции здания и от материалов, из которых они изготовлены;
  • от условий комфортной среды.

Часть потерь компенсируется внутренними источниками энергии (в жилых зданиях это работа кухни, бытовых приборов, освещения). Остальная часть потерь энергии покрывается системой отопления. Какие потенциальные действия можно предпринять по уменьшению потребления энергии?

  1. ограничение потерь тепла путем снижения теплопроводности ограждающих конструкций здания (герметизация окон, утепление стен, крыш);
  2. поддержание подходящей постоянной, комфортной температуры в помещении только тогда, когда там находятся люди;
  3. снижение температуры в ночное время или в период, когда в помещении нет людей;
  4. улучшение использования «свободной энергии» или внутренних источников тепла.

2. Что такое благоприятная комнатная температура?

По оценкам специалистов, ощущение «удобной температуры» связано с возможностью тела избавиться от энергии, производимой им.

При нормальной влажности ощущение «удобной теплоты» соответствует температуре около +20°С. Это среднее между температурой воздуха и температурой внутренней поверхности окружающих стен. В плохо изолированном здании, стены которого на внутренней поверхности имеют температуру +16°С, воздух должен быть нагрет до температуры +24°С, чтобы получить благоприятную температуру в комнате.

Ткомф = (16 + 24) / 2 = 20°C

3. Системы отопления подразделяются на:

закрытые, когда теплоноситель проходит в здании только через приборы отопления и используется только на нужды нагрева; открытые, когда теплоноситель используется для отопления и для нужд горячего водоснабжения. Как правило, в закрытых системах отбор теплоносителя на какие-либо нужды запрещен.

4. Система радиаторов

Системы радиаторов бывают однотрубные, двухтрубные и трехтрубные. Однотрубные - используются, в основном, в бывших республиках СССР и в Восточной Европе. Разработаны для упрощения системы труб. Существует великое множество однотрубных систем (с верхней и нижней разводкой), с перемычками или без них. Двухтрубные - уже появились в России, а ранее имели распространение в странах Западной Европы. Система имеет одну подающую и одну отводящую трубу, а каждый радиатор снабжается теплоносителем с одинаковой температурой. Двухтрубные системы легко регулировать.

5. Качественное регулирование

Существующие в России системы теплоснабжения проектируются на постоянный расход (так называемое качественное регулирование). Отопление базируется на системе с зависимым присоединением к магистралям с постоянным расходом и гидроэлеватором, который уменьшает статическое давление и температуру в трубопроводе к радиаторам путем смешения обратной воды (в 1,8 - 2,2 раза) с первичным потоком в подающем трубопроводе. Недостатки:

  • невозможность учета реальной потребности в тепле конкретного здания в условиях колебания давления (или перепада давления между подачей и обраткой);
  • управление по температуре идет из одного источника (тепловая станция), что приводит к перекосам при распределении тепла во всей системе;
  • большая инерционность систем при центральном регулировании температуры в подающем трубопроводе;
  • в условиях нестабильности давления в поквартальной сети гидроэлеватор не обеспечивает надежную циркуляцию теплоносителя в системе отопления.

6. Модернизация систем отопления

Модернизация систем отопления включает в себя следующие мероприятия:

  1. Автоматическое регулирование температуры теплоносителя на вводе в здание, в зависимости от температуры наружного воздуха с обеспечением насосной циркуляции теплоносителя в системе отопления.
  2. Учет количества потребленного тепла.
  3. Индивидуальное автоматическое регулирование теплоотдачи отопительных приборов путем установки на них термостатических вентилей.

Рассмотрим подробно первый пункт мероприятий.

Автоматическое регулирование температуры теплоносителя реализуется в автоматизированном узле управления. Существует достаточно много разновидностей схем построения узла. Это обусловлено конкретными конструкциями здания, системы отопления, различными условиями эксплуатации.

В отличие от элеваторных узлов, устанавливаемых на каждой секции здания, автоматизированный узел целесообразно устанавливать один на здание. С целью минимизации капитальных затрат и удобства размещения узла в здании, максимальная рекомендуемая нагрузка на автоматизированный узел не должна превышать 1,2 - 1,5 Гкал/час . При большей нагрузке рекомендуется устанавливать сдвоенные, симметричные или несимметричные по нагрузке узлы.

Принципиально, автоматизированный узел состоит из трех частей: сетевой, циркуляционной и электронной.

  • Сетевая часть узла включает в себя клапан регулятора расхода теплоносителя, клапан регулятора перепада давления с пружинным регулирующим элементом (устанавливается по необходимости) и фильтры.
  • Циркуляционная часть состоит из циркуляционного насоса и обратного клапана (если клапан необходим).
  • Электронная часть узла включает регулятор температур (погодный компенсатор), обеспечивающий поддержание температурного графика в системе отопления здания, датчик температуры наружного воздуха, датчики температур теплоносителя в подающем и обратном трубопроводах и редукторный электропривод клапана регулирования расхода теплоносителя.

Контроллеры отопления были разработаны в конце 40-х годов XX века и, с тех пор, принципиально отличается лишь их исполнение (от гидравлических, с механическими часами, до полностью электронных микропроцессорных устройств).

Основная идея, заложенная в автоматизированный узел - поддержание отопительного графика температуры теплоносителя, на который рассчитана система отопления здания, независимо от температуры наружного воздуха. Поддержание температурного графика наряду с устойчивой циркуляцией теплоносителя в системе отопления осуществляется путем подмеса необходимого количества холодного теплоносителя из обратного трубопровода в подающий с помощью клапана с одновременным контролем температуры теплоносителя в подающем и обратном трубопроводах внутреннего контура системы отопления.

Совместная деятельность сотрудников ЗАО «ПромCервис» и ПКО «Прамер» (г. Самара) в области разработки контроллеров отопления привела к созданию прототипа специализированного контроллера , на базе которого в 2002 году был создан узел регулирования теплоснабжения административного здания ЗАО «ПромСервис» для отработки алгоритмической, программной и аппаратной частей управляющего системой контроллера.

Контроллер представляет собой микропроцессорный прибор, способный автоматически управлять тепловыми узлами, содержащими до 4 контуров отопления и горячего водоснабжения.

Контроллер обеспечивает:

  • счет времени работы прибора с момента включения (с учетом сбоя питания не более двух суток);
  • преобразование сигналов подключенных преобразователей температуры (термометров сопротивления или термопар) в значения температуры воздуха и теплоносителя;
  • ввод дискретных сигналов;
  • генерацию управляющих сигналов для управления частотными преобразователями;
  • генерацию дискретных сигналов для управления реле (0 - 36 В; 1 А);
  • генерацию дискретных сигналов для управления силовой автоматикой (220 В; 4 А);
  • отображение на встроенном индикаторе значений параметров системы, а также значений текущих и архивных значений измеренных параметров;
  • выбор и настройку системных параметров управления;
  • передачу и настройку системных параметров работы по удаленным линиям связи.

Измеряя параметры системы, контроллер обеспечивает управление тепловым режимом здания, воздействуя на электропривод регулирующего клапана (клапанов) и, если это предусмотрено системой, на циркуляционный насос.

Регулирование реализуется по заданному температурному графику отопления с учетом реальных измеренных значений температур наружного воздуха и воздуха в контрольном помещении здания. При этом система автоматически производит коррекцию выбранного графика с учетом отклонения температуры воздуха в контрольном помещении от заданного значения. Контроллер обеспечивает снижение на заданную глубину тепловой нагрузки здания в заданный промежуток времени (режим выходного дня и ночной режим). Возможность ввода аддитивных поправок к измеряемым значениям температур позволяет адаптировать режимы работы системы регулирования к каждому объекту с учетом его индивидуальных характеристик. Встроенный двустрочный индикатор обеспечивает просмотр измеренных и заданных параметров посредством простого и понятного пользовательского меню. Архивные значения параметров можно просматривать как на индикаторе, так и передавать их на компьютер по стандартному интерфейсу. Предусмотрены функции самодиагностики системы и калибровки каналов измерения.

Узел учета и регулирования теплоснабжения административного здания ЗАО «ПромСервис» спроектирован и смонтирован летом 2002 года на закрытой системе отопления с нагрузкой до 0,1 Гкал/час с однотрубной системой радиаторов. Несмотря на относительно небольшие габариты и этажность здания, система отопления содержит некоторые особенности. На выходе из теплового узла система имеет несколько петель горизонтальной разводки на этажах. При этом существует разделение системы отопления на контуры по фасадам здания. Коммерческий учет потребленного тепла обеспечивается теплосчетчиком СПТ-941К, в составе которого: термометры сопротивления типа ТСП-100П; преобразователи расхода ВЭПС-ПБ-2; тепловычислитель СПТ-941. Для визуального контроля температуры и давления теплоносителя используются комбинированные стрелочные приборы Р/Т.

Система регулирования состоит из следующих элементов:

  • контроллера К;
  • поворотного клапана с электроприводом ПКЭ;
  • циркуляционного насоса Н;
  • датчиков температуры теплоносителя в подающем Т3 и обратном Т4 трубопроводах;
  • датчика температуры наружного воздуха Тн;
  • датчика температуры воздуха в контрольном помещении Тк;
  • фильтра Ф.

Датчики температуры необходимы для определения реальных текущих значений температур для принятия решения контроллером об управлении клапаном ПКЭ на их основе. Насос обеспечивает устойчивую циркуляцию теплоносителя в системе отопления здания при любом положении регулирующего клапана.

Ориентируясь на теплотехнические параметры системы отопления (температурный график, давление в системе, условия работы) в качестве регулирующего элемента был выбран поворотный трехходовой клапан HFE с электроприводом АМВ162 производства фирмы «Данфосс» . Клапан обеспечивает смешение двух потоков теплоносителя и работает при условиях: давление - до 6 бар, температура - до 110°С, что вполне соответствует условиям использования. Применение трехходового регулирующего клапана позволило отказаться от установки обратного клапана, традиционно устанавливаемого на перемычку в системах регулирования. В качестве циркуляционного насоса используется бессальниковый насос UPS-100 фирмы «Грундфос» . Датчики температуры - стандартные термометры сопротивления ТСП. Для защиты клапана и насоса от воздействия механических примесей используется магнитно-механический фильтр ФММ. Выбор импортного оборудования обусловлен тем, что перечисленные элементы системы (клапан и насос) зарекомендовали себя как надежное и неприхотливое в эксплуатации оборудование в достаточно тяжелых условиях. Несомненным преимуществом разработанного контроллера является то, что он способен работать и электрически стыкуется как с достаточно дорогим импортным оборудованием, так и позволяет использовать широко распространенные отечественные приборы и элементы (например, недорогие, по сравнению с импортными аналогами, термометры сопротивления).

7. Некоторые результаты эксплуатации

Во-первых. За период эксплуатации узла регулирования с октября 2002 г. по март 2003 г. не зафиксировано ни одного отказа какого-либо элемента системы. Во-вторых. Температура в рабочих помещениях административного здания поддерживалась на комфортном уровне и составила 21 ± 1 °С при колебаниях температуры наружного воздуха от +7°С до -35°С. Уровень температуры в помещениях соответствовал заданной, даже при условии подачи из теплосети теплоносителя с заниженной относительно температурного графика температурой (до 15°С). Температура теплоносителя в подающем трубопроводе менялась за это время в пределах от +57°С до +80°С. В-третьих. Применение циркуляционного насоса и балансировки контуров системы позволило достичь более равномерного теплоснабжения помещений здания. В-четвертых. Система регулирования позволила при соблюдении комфортных условий в помещениях здания снизить общее количество потребленного тепла. На этом следует остановиться подробнее. В табл.1 приведены значения измеренных теплосчетчиком объемов потребленного зданием тепла за различные месяцы со значительно отличающимися средними температурами наружного воздуха. За базу сравнения приняты значения количества потребленного тепла в отопительном сезоне 2001/2002 года, когда здание было оснащено только системой коммерческого учета потребления тепла (без регулирования).

Значение 26% получено сравнением с базовым значением 26,6 Гкал при средней температуре -12,6°С, что идет в запас результатов. Приведенные данные красноречиво показывают, что эффект от применения автоматического регулирования особенно значителен при температурах наружного воздуха выше -5°С. В то же время, и при достаточно низких средних температурах воздуха снижение теплопотребления заметно. Последняя строка табл.1 содержит данные о потреблении тепла с оптимально настроенным регулятором, поэтому при снижении средней температуры с -12,4°С до -15,9°С потребление тепла сократилось с 23,9 Гкал до 19,8 Гкал, что составляет 17%. Немаловажное значение имеет и то, что контроллер отслеживает изменение температуры воздуха на улице в течение дня, подавая в контур отопления здания теплоноситель с пониженной температурой, одновременно следя за температурой в помещении здания. Особенно актуально это в ясную погоду, со значительной амплитудой колебания температур ночью и днем. Поэтому ранней весной, несмотря на достаточно низкие ночные температуры, потребление тепла становится еще меньше.

Если рассмотреть изменение режима теплоснабжения в течение суток и недели при активированных функциях контроллера понижения температуры теплоносителя на подаче в ночные часы и выходные дни, то получается следующее. Контроллер позволяет эксплуатирующему персоналу выбирать длительность ночного режима и его «глубину», то есть величину понижения температуры теплоносителя относительно заданного температурного графика в заданный период времени исходя из особенностей здания, графика работы персонала и т.д. Например, эмпирическим путем нам удалось подобрать следующий ночной режим. Начало в 16 часов, окончание в 02 часа. Понижение температуры теплоносителя на 10°С. Какие же получились результаты? Снижение потребления тепла в ночной режим составляет 40 - 55% (зависит от температуры наружного воздуха). При этом температура теплоносителя в обратном трубопроводе снижается на 10 - 20 °С, а температура воздуха в помещениях - всего на 2-3°С. В первый час после окончания ночного режима начинается режим повышенного теплоснабжения «натоп», при котором потребление тепла относительно стационарного значения достигает 189%. Во второй час - 114%. С третьего часа - режим стационарный, 100%. Эффект экономии значительно зависит от температуры наружного воздуха: чем выше температура, тем сильнее выражен эффект экономии. Например, снижение теплопотребления при введении «ночного» режима при температуре наружного воздуха около -20°С составляет 12,5%. При повышении среднесуточной температуры эффект может достигать и 25%. Аналогичная, но еще более выгодная ситуация возникает при реализации режимов «выходного дня», когда задается понижение температуры теплоносителя на подаче в выходные дни. Нет необходимости поддерживать комфортную температуру во всем здании, если в нем никого нет.

Выводы

  1. Полученный опыт эксплуатации системы регулирования показал, что экономия потребляемого тепла при регулировании теплоснабжения, даже при несоблюдении температурного графика теплоснабжающей организацией, реальна и может достигать при определенных погодных условиях до 45% в месяц.
  2. Использование разработанного прототипа контроллера позволило упростить систему регулирования и снизить ее стоимость.
  3. В системах отопления с нагрузкой до 0,5 Гкал/час возможно использование достаточно простой и надежной семиэлементной системы регулирования, способной обеспечить реальную экономию средств, при сохранении комфортных условий в здании.
  4. Простота работы с контроллером и возможность задания с клавиатуры многих параметров позволяет оптимально настроить систему регулирования, исходя из реальных теплофизических характеристик здания и желаемых условий в помещениях.
  5. Эксплуатация системы регулирования в течение 4,5 месяцев показала надежную, устойчивую работу всех элементов системы.

ЛИТЕРАТУРА

  1. Контроллер РАНК-Э. Паспорт.
  2. Каталог автоматических регуляторов для систем теплоснабжения зданий. ЗАО «Данфосс». М., 2001 г., с.85.
  3. Каталог «Бессальниковые циркуляционные насосы». «Грундфосс», 2001 г.
Похожие статьи

© 2019 evently.ru. Все о канализации и водоснабжении.